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S,e-~’~eL and Soe-ihz.L, L being the length of the

layer. If S. and So are the elements of an appropriately

normalized scattering matrix, then the reciprocity of

the structure implies that the scattering matrix is sym-

metrical, so that Se is also the appropriate scattering

coefficient from the even mode of the layer to the even

distribution of Rayleigh waves on the substrates be-

yond the layer, and similarly for So. As a result, the

Rayleigh wave fields beyond the “output” of the layer

are represented by the vector
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If the “aperture” field at the cross section containing

the beginning of the layer is approximated by the field

of the incident Rayleigh wave, the scattering coefficients

S. and S. must then be real quantities because these

coefficients are essentially the projection of the real

aperture (Rayleigh wave) field on the modes of the layer,

which are likewise real in their transverse field distri-

bution. In practice, bulk waves are generated at the in-

put and output junctions and these will contribute to

the aperture field, but their effect is probably small.

Within the above approximation, therefore, the

optimum transfer of energy from the lower to upper

substrates is seen from (A.2) to occur when

(kzo – kJL = n-.

The ratio of energy on the upper and lower substrates

is then given by:

P. \ 1 + so’/se’/’
x= [ l-so’/se’[’ “

Complete transfer of energy can occur only if SO= S.,

but this will not in general be the case. Nevertheless,

the asymmetry of a single Rayleigh wave propagating

on one substrate is such that neither of the layer modes

is preferentially excited to any significant degree, so

that one would expect So and S. to be of comparable

magnitude.
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Short Papers

Stripline Triplexer for Use in Narrow-

Bandwidth Multichannel Filters

RALPH KIHL~N

Atnfracf—Design techniques and equivalent circuits are pre-

sented for constructing a.printed-circuit narrow-bandwidth comple-

mentary triplexer filter. The techniques and circuits described allow

the construction of contiguous-band multichannel filters using

printed circuits with no shorted stubs.

A unit was designed and constructed to give a three-percent rela-

tive bandwidth for each separate channel. The agreement between

theory and experiment was in the range of measurement accuracy.

Manuscript received September 20, 1971; revised November 11, 1971.
The author is with the Division of Network Theory, Chalmers University of

Technology, Gothenburg 5, Sweden.

INTRODUCTION

The design of a multichannel filter requires a network that will

separate a given frequency band into N channels with minimum in-

sertion loss and low VSWR at the input port. One way of solving

this problem is to use cascaded-channel-separating units [1 ]- [3 ],

i.e., diplexers, with constant input-port impedances. The advantage

of this design is discussed by Matthaei and Cristal [1]. For each

channel to be separated, one diplexer is needed. In order tc reduce

the number of separating units, the author has constructed a tri-

plexer: a unit that separates out two contiguous channels. The total

number of elements in a triplexer is the same as in two corresponding

diplexers. However, the required space for a triplexer is less than

that of two diplexers. The triplexer is a complementary or pseudo-

complementary filter unit with constant input-port impedance and

it can therefore be cascaded, as the diplexer, to obtain a multichannel

filter system of various sizes without any interaction between the

filter channels.
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Fig. 1. A triplexer. (a) A prototype of a triplexer.
(b) Photo of a strlrdine tridexer.
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Flg.2. Tbeparallel interconnection section. (a) Possible interconnection section.
(b) Transformed section. (c) Ecmivzlent interconnection section, its static
capacitance network, and static capacitance matrix. (d) Transformed static
capacitance matrix eliminating the transformer, the static camcitance. network.
and its parallel-line coufwuradon.

A photo of a narrow-bandwidth stripline triplexer is shown in

Fig. l(b) anditsstub equivalent in Fig. l(a). The filter consists of

two bandpass filters and one bandstop filter connected in parallel.

Adiplexer similar tothetriplexer has been described by WeIlzel [2].

FILTER SYNTHESIS AND INTERCONNECTION SECTION

A triplexes with maximally flat filter characteristics is to be de-

signed. The filters in the triplexer do not have the same center fre-

quencies as they do in the case of a diplexer. It is therefore impossible

todesign atriplexer with maximally flat characteristics and exactly

constant input-port impedance. The synthesis and design of the two

bandpass filters is outlined by Wenzel [2].

For the narrow-bandwidth case, it is possible to desigu the band-

stop filter from asingly terminated low-pass LCprototype filter [I]

with the number of elements double that of a bandpass filter to get a

pseudocomplementary triplexer with reasonable low VSWR at the

input port. Foratriplexer with a3-percent bandwidth for the band-

pass filters, themaximum VSWRiscalculated to be 1.058.

The three filters are connected in parallel. A possible connection

is shown in Fig. 2(a). The unit element (Zw,) is part of the bandstop

filter, and one of the transformers (l:n) and one of the series stubs

(C) are parts of one of the bandpass filters. An equivalent parallel-line
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Outpu f

Fig. 3. N’ormalized impedances of the striplinetrblexer!
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Fig.4. Calculated andmeasured characteristics of the 3-percent
bandwidth triplexes with thecenter frequencYat3.OGHz.

net, its static capacitance network, and its static matrix [4] are

shown in Fig. 2(c). By multiplying the first andlast row and column

in the matrix with n, the transformers are eliminated without

changing the performance of the network. Fig. 2(d) shows the trans-

formed matrix, its static capacitance network, and an equivalent

parallel-line configuration.

EXPERIMENTAL RESULTS

A maximally flat triplexer with a relative bandwidth for the band-

pass filters of 3percent was designed. The bandpass filters had three

nonredundant elements each. The even- and odd-mode normalized

characteristic impedances for a stripline triplexer shown in Fig. 3

are those obtained by the synthesis procedure outlined. Because of

the redundant elements in the filters, one has considerable freedom in

choosing the impedances in the bandpass filters. The physical di-

mensions are calculated frcm the even- and odd-]mode impedances

[5], [6].

A photograph of an experimental printed circui t in Rexolite 2200

foratriplexer isgiven in Fig. l(b) andthetest result sinl~ig.4.The
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computed filter characteristics in Fig. 4 were obtained by assuming

that all theeIements of thetriplexer have thesame unloaded Qvalue

as astriplineof 50 Qina Rexolite 2200 circuit board. No final adjust-

ment of the dimensions was required to obtain this response. The

resonator length reduction factor was 2.50 percent of a quarter of a

wavelength at3. O GHz, as was calculated by Lagerlof [7]. The elec-

trical length of the corner was measured and found to be 9.62 percent

of a quarter wavelength at the same frequency. The alignment

of the center frequencies of the filters was of great importance. Care

had to betaken inthephotoetch process togetafilter requiring no

final adjustment. Insertion loss at frequencies outside the crossover

region was very low due to the loose coupling of the bandstop filter

resonators.
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Implementation of Conservation-of-Energy Condition

in Small Aperture and Small Obstacle Theory

CHUNG-LI REN

Afrsfracf-In a previous paper, Felsen and Kahn showed that the

scattering matrix of small apertures and obstacles in multimode

waveguide regions is conveniently calculated for general lossless

structures, but observed that the scattering matrix does not satisfy

the conservation-of-energy requirement. It is also to be noted that

the scattering parameters could become much larger than unity or

even infinite for frequencies near or at the cutoff of the coupled

modes. A method is presented in this correspondence to implement

the lossless condition so that the resultant scattering matrix satisfies

the conservation-of-energy requirement and, consequently, can be

represented as a Iossless equivalent circuit for all frequencies. The

corresponding impedance, admittance, and transfer matrices for gen-

eral lossless symmetrical structures are given in compact form

directly in terms of the scattering parameters.

I. INTRODUCTION

The design of waveguide components requires the availability of

specific discontinuity structures with known transmission and re-

flection properties. A rigorous theoretical analysis of these wave-

guide discontinuities is very often quite involved and, in practice,

its solution usually becomes tractable only with the imposition of

judicious assumptions. One such assumption is that the apertures

and the obstacles are small and the solutions may be evaluated easily

in the lowest order of approximation, which is generally known as

the small aperture and small obstacle theory [1]. The application of

small aperture and small obstacle theory to discontinuities in multi-

mode waveguide regions becomes particularly attractive in view of

the fact that such design information is generally unavailable in the

literature, whether in the form of theoretical calculation or measure-

ments. The design of millimeter wave waveguide components, such

as filters and couplers involving multimode propagation, is such an

examde.

However, the scattering matrix of a lossless waveguide discon-

Manuscript received September 29, 1971; revised December 17, 1971.
The author is with Bell Telephone Laboratories, Incorporated, North Andover,
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tinuity calculated from small aperture and small obstacle theory is

not unitary and, hence, in violation of the conservation of energy

[1]. Thus the impedance or admittance matrices, when converted

from the scattering matrix, always contain real parts. In addition,

the scattering parameters become very large or even infinite for fre-

quencies at which certain modes are near or at cutoff. Therefore,

meaningful equivalent circuits cannot be derived from these scatter-s.
ing matrices. In this correspondence, a technique is proposed to

implement the conservation-of-energy condition so that the modified

scattering matrices satisfy this condition. The corresponding im-

pedance, admittance, and transfer matrices are derived in compact

form directly in terms of the scattering parameters.

II. SMALL APERTURE AND SMALL OBSTACLE SCATTERING

FORMULATION OF LOSSLESS SYMMETRICAL DISCON-

TINUITIES IN MULTIMODE WAVEGUIDES

Consider the configuration in Fig. 1 where either a perfectly con-

ducting obstacle or an aperture is located in a waveguide or between

several waveguides propagating N modes. For convenience in the

derivation of the theory, the structures of Fig. 1 are assumed to be

symmetric in the sense that there exists a transverse plane of bisec-

tion at z= O. Such structures are the most frequently encountered

discontinuities in the waveguide component designs.

The small aperture and small obstacle formulation for the scat-

tering coefficients of the structures in Fig. 1 is given in equations

(10) and (33) of [1], which may be generalized and written in a

matrix form shown in (2).

b=Sa
a=(”%”) b=(”;:”)

(1)

( A,+ ’4, 11+ ’4,-A,
s = ———––– l–———––

I+ AI– A2 [ AI+A2 ) (2)
2Nx2N

where I is the NX N identity matrix. A I and A z are imaginary

NxN submatrices, which are functions of the polarizabilities of the

discontinuity and the electromagnetic fields of the modes that are

coupled by the discontinuity. In the general case, both Al and Aj

are nonzero. However, either AZ or AI is a zero matrix for structures

that are either pure shunt or pure series, respectively. For example,

when all modes are coupled only through their longitudinal magnetic

field components and (or) their transverse electric field components,

Al is nonzero, Az = O, and the structure is pure shunt. In the dual case

when only the longitudinal electric field and (or) the transverse

magnetic fields are coupled, As is nonzero and A ~= O. The structure

becomes pure series. It is to be noted that the scattering matrix in

(2) is not unitary and does not satisfy the conservation-of-energy

requirement [1 ]. In the sub matrices Al and A z, certain elements may


